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Distribution of epicenters in the Olami-Feder-Christensen model
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We show that the well established Olami-Feder-Christeri@#C) model for the dynamics of earthquakes
is able to reproduce a striking property of real earthquake data. Recently, it has been pointed out by Abe and
Suzuki that the epicenters of earthquakes could be connected in order to generate a graph, with properties of a
scale-free network of the BaragiaAlbert type. However, only the nonconservative version of the Olami-Feder-
Christensen model is able to reproduce this behavior. The conservative version, instead, behaves like a random
graph. Besides indicating the robustness of the model to describe earthquake dynamics, those findings reinforce
that conservative and nonconservative versions of the OFC model are qualitatively different. Also, we propose
a completely different dynamical mechanism that, even without an explicit rule of preferential attachment,
generates a scale-free network. The preferential attachment is in this case a “byproduct” of the long term
correlations associated with the self-organized critical state.
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The concept of self-organized criticali(§OC was intro-  lattice (there is always dissipation in the boundarid€dut if
duced by Bak, Tang, and Wiesenfél as a possible expla- «<0.25, there is some dissipation also in the bulk of the
nation of scale invariance in nature. Since this seminal worksystem. This model has been widely studied in literature. At
a great number of cellular automata and coupled map modethe same time, it is a prototype of self-organization in sys-
have been investigated in an attempt to elucidate the essefems with nonconservative relaxation rulgise existence of
tial mechanisms hidden in a wide class of different nonlineaSOC in the nonconservative models is, up to now, not well
phenomena whose statistics of evefts avalanchegsare  understood6-9]) and a paradigm of the success of SOC
governed by power laws. However, up to now, althoughideas, since it is able to reproduce important aspects of the
there are successful analytical investigations of several modtynamics of earthquakes.
els, one still lacks a general theoretical framework for self-  Recently, Abe and SuzukiO] observed a new power law
organized criticality. For many models, most of the resultsin the statistics of earthquakes. They analyzed earthquake
are still pure numerical. For a review see, for instance, recerdata from both the district of southern California and Japan,
works of Jensen and Turcotf2,3]. connecting their epicenters in order to generate a graph. Each

In this context, a model that has been widely studied inarea analyzed was divided into small cubic cells; they asso-
the literature is the Olami-Feder-Christend@®FC) model  ciated with each of these cells a node every time an earth-
for the dynamics of earthquakes. The original OFC modelquake started inside it. The epicenters of two successive
introduced in 19974], is a two-dimensional coupled map earthquakes were linked, defining an edge. In this way, the
model defined on a square lattice, whose dynamical rulegata have been mapped into a complex growing graph that
were inspired in a spring-block model proposed to describ@ehaves like a scale-free network of the Basit#dbert type
the dynamics of earthquake§]. Earthquakes, in the real [11]. The degree distribution of the graph decays as a power
world, are associated with many power laws, the best knowmaw. The clustering coefficient and the diameter of a cluster
of them being the Gutenberg-Ritcher law for the distributionwere also calculated, showing small-world network proper-
of avalanche energies. The OFC model assigns—to each sifies [12]. These features have revealed another aspect of
of a square lattice—a real variab#e; (energy or tension  earthquakes as a complex critical phenomenon.
initially chosen at random in the intervid,z.), wherez; is We then decided to check whether the Olami-Feder-
a threshold valuez; ; increases slowly throughout the lattice Christensen model could also predict this striking behavior.
and each time that, for a given sitg,; exceedsz., the  We found that the nonconserving version of the model repro-
system relaxes. A fractioaz ; of the tension of sitei(j) is  duces the behavior of experimental data, even for a very
then distributed to each of its nearest neighbors. As a consemall degree of nonconservation. The degree distribution of
guence, the tension of some of its neighbors may also exceaHe evolving network formed by its epicenters is scale-free.
z;, generating an “avalanche” that will only stop whep; However, the conservative version of the model has a quali-
<z, again for all sites of the lattice. We have assumed, asatively different behavior, more similar to a random graph,
usual, open boundary conditions in our simulations. whose degree distribution is Poisson, indicating that most of

Within the OFC model, there is a dissipation parameter the nodes have the same degree and, although random, the
If «=0.25, the total tension in the lattic&z ;, is con-  corresponding network is much more homogeneous. These
served during the avalanching process, in the bulk of theesults are in agreement with some recent observations that

support the claims that conservative and nonconservative

versions of the OFC model are quite different. Hergarten and
*Electronic address: tpeixoto@if.usp.br Neugebauef13] studying the efficiency of the OFC model
TElectronic address: prado@if.usp.br to predict foreshocks and aftershocks, de Carvalho and Prado
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FIG. 1. Degree distributiofP(k) for different values ofa. (a)
Nonconservative regime: the results show a scale-free network be-
havior in all cases. The curves fax<0.249 have been shifted up-
wards along thg axis for clarity, otherwise they would all coincide.

In all cases]. =200 and the number of registered epicenters s 10
(b) Conservative regime: the degree distribution is similar to a
random graph. In this case we hale= 200 and 16 events. Low-

(a)

ering the statistics does not change this behavior. All log scales are 0.00008
base 10.

0.00006
[14], studying the transient behavior of the OFC model, and 0.00004

Miller and Boulter[15], studying the distribution of values at
which supercritical sites topple, have also reported qualita-
tively different behaviors for conservative and nonconserva-
tive OFC models.

In a complex graph, the edges are not distributed in a
regular way, and not all nodes have the same number of
edges. One possible way to characterize complex networks is
through its distribution functiof®(k), which gives the prob-
ability that a random selected node has exaktidges k is
called thedegreeof the nodg. In a random graph, since the  (b)
edges are placed randomly among the nodes, the majority of FIG. 3. Spatial distribution of node degrees in the nonconserva-
nodes have approximately the same degree, close 10 the gyje case, fora=0.249,L=200, and 10 events. Sites associated
erage connectivityk), and the distributiorP(k) is a Pois-  yith nodes of higher degree are darker and, as one can see, are
son distribution with a peak @((k)). Most complex net-  ¢joser to the boundaries. Parib) is a blow up of(a). The 20 sites
works, however, have a distribution functioR(k) that closer to the boundaries do not appear in the picture, and the scale
deviates significantly from a Poisson distribution. In particu-has been changed in order to show the details of the bulk of the
lar, for a large number of networks, associated with a widdattice. We can see that the structure of the network observéa in
class of systems, ranging from the World Wide Web to metais reproducedand it is not an effect due to the boundayies
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FIG. 5. Degree distributiorP(k), for «=0.249,L =200, and
0.00025 1C° events, for different cell sizes. All log scales are bas€alo.

Continuous linel =200 and each site of the lattice defines a cell.

e (b) Dashed lineL =400 and each four adjacent sites are in the same
0001 cell. The curve has been shifted upwards in yheis for clarity.
0.00010§

oicotash sizes. As the first and last sites are the only ones with an odd

number of edgesif they do not coincidg they are elimi-
nated. Our results for the distributidd(k) can be seen in
Fig. 1. It is clear that, ife<<0.25[Fig. 1(a)], the distribution

is scale-free for some decades, with an exponehtt varies
linearly with « (see Fig. 2, at least for values aof not too far
from the conservative regime. In Fig. 1 some curves have
been shifted upwards for the sake of clarity. They would
coincide, except for a small change in the slope, otherwise.
We have also observed that the network grows toward the
inside of the lattice, with the most connected sites in the
borders and the most inner sites being the last ones being
added to ifsee Fig. 83)]. The complex structure, however,
s not a boundary effect. If we take out the border sites and

=200, and the number of epicenters i€1() The same scale of ‘adjust the sc_ale, we see that the same spatial st_ructure is
Fig. 3@ has been usedb) The scale has been changed to revealreprOduceC[Flg' 3(b)]. Because one needs a growing .net_
details of the structure of the network that, in this case, is muchWork to observe the scale-free behaviad], aﬂer_a Ce_rtaln
more homogeneous and quite different from that observed in th umber of events, as a consequence of the finite size of the
nonconservative regime. attice, most of the sites of the lattice have already become
part of the network. At this point the scale-free behavior
bolic networks,P(k) has a power-law tailP (k) ~k~?. Such  starts to break.
networks are called scale-fr¢&1], and have called the at- If the system is conservative, however, the distribution
tention of many researchers in the last years. function P(k) has a well-defined peak, indicating a higher
We simulated the OFC model in a square lattice, buildingdegree of homogeneity among the noffeig). 1(b)]. Figures
graphs with a procedure very similar to what has been em4(a) and 4b), which should be compared with Fig. 3, show
ployed by Abe and Suzuki. Each site that gives birth to a newthe spatial distribution of connectiviti¢degree of the nodgs
avalanche, of any size, is an epicenter; each epicenter defings the lattice. As expected, it is much more homogeneous.
a node, and every node is then connected to the node whefdis homogeneous behavior is not destroyed if we change
the next epicenter occurs, establishing a link or edge betwedhe statistic of events.
them. If two subsequent earthquakes start in the same cell Finally, our findings also seem to be robust with respect to
(which does not happen if each site is a cell, but do happethe cell size and the size of the lattice. If we increase the size
with larger cell3, we have a loop. After many avalanches of the cell, defining, for instance, four adjacent sites of the
this procedure generates a complex netwarkgraph, and  lattice as a unique cell, there is no change in the results, not
we have studied some of its statistical properties. even in the exponeny that characterizes the degree distri-
After eliminating a transient of at least 4@vents, we bution P(k), as shown in Fig. 5. Also, there is no change if
calculated numerically the distribution functiét(k) for the = we increase the size of the lattice.
graph constructed from the time sequence of epicenters in In conclusion, we have shown that the nonconservative
the OFC model for different values of and different lattice  version of the Olami-Feder-Christensen model is able to
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FIG. 4. Spatial distribution of node degrees for the conservativ
case. Sites associated with nodes of higher degree are darker
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reproduce the scale-free network associated with the dynanguakes, reproducing the experimental findings of Abe and
ics of epicenters observed on real earthquake data. The coBuzuki, present a completely different dynamical mechanism
servative version of the model displays a qualitatively differ-to generate a scale-free network. There is no explicit rule of
ent behavior, being closer to a random graph. The smallegireferential attachment, and the preferential attachment ob-
degree of nonconservation seems to be enough to change tberved in the network is a signature of the model dynamics.
behavior of the model, since far=0.249 we see tha®?(k) Maybe the complete study of the properties of this network

has already a well-defined power-law behavior for some deean help solve some still controversial aspects of the Olami-
cades. Those findings, besides giving an indication of théeder-Christensen model and of self-organized critical be-
robustness of this model to reproduce the dynamics of earthiavior.
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