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Distribution of epicenters in the Olami-Feder-Christensen model
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We show that the well established Olami-Feder-Christensen~OFC! model for the dynamics of earthquakes
is able to reproduce a striking property of real earthquake data. Recently, it has been pointed out by Abe and
Suzuki that the epicenters of earthquakes could be connected in order to generate a graph, with properties of a
scale-free network of the Baraba´si-Albert type. However, only the nonconservative version of the Olami-Feder-
Christensen model is able to reproduce this behavior. The conservative version, instead, behaves like a random
graph. Besides indicating the robustness of the model to describe earthquake dynamics, those findings reinforce
that conservative and nonconservative versions of the OFC model are qualitatively different. Also, we propose
a completely different dynamical mechanism that, even without an explicit rule of preferential attachment,
generates a scale-free network. The preferential attachment is in this case a ‘‘byproduct’’ of the long term
correlations associated with the self-organized critical state.
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The concept of self-organized criticality~SOC! was intro-
duced by Bak, Tang, and Wiesenfeld@1# as a possible expla
nation of scale invariance in nature. Since this seminal wo
a great number of cellular automata and coupled map mo
have been investigated in an attempt to elucidate the es
tial mechanisms hidden in a wide class of different nonlin
phenomena whose statistics of events~or avalanches! are
governed by power laws. However, up to now, althou
there are successful analytical investigations of several m
els, one still lacks a general theoretical framework for se
organized criticality. For many models, most of the resu
are still pure numerical. For a review see, for instance, rec
works of Jensen and Turcotte@2,3#.

In this context, a model that has been widely studied
the literature is the Olami-Feder-Christensen~OFC! model
for the dynamics of earthquakes. The original OFC mod
introduced in 1992@4#, is a two-dimensional coupled ma
model defined on a square lattice, whose dynamical ru
were inspired in a spring-block model proposed to desc
the dynamics of earthquakes@5#. Earthquakes, in the rea
world, are associated with many power laws, the best kno
of them being the Gutenberg-Ritcher law for the distributi
of avalanche energies. The OFC model assigns—to each
of a square lattice—a real variablezi , j ~energy or tension!,
initially chosen at random in the interval@0,zc), wherezc is
a threshold value;zi , j increases slowly throughout the lattic
and each time that, for a given site,zi , j exceedszc , the
system relaxes. A fractionazi , j of the tension of site (i , j ) is
then distributed to each of its nearest neighbors. As a co
quence, the tension of some of its neighbors may also exc
zc , generating an ‘‘avalanche’’ that will only stop whenzi , j
,zc again for all sites of the lattice. We have assumed,
usual, open boundary conditions in our simulations.

Within the OFC model, there is a dissipation parametera.
If a50.25, the total tension in the lattice,(zi , j , is con-
served during the avalanching process, in the bulk of
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lattice ~there is always dissipation in the boundaries!. But if
a,0.25, there is some dissipation also in the bulk of t
system. This model has been widely studied in literature.
the same time, it is a prototype of self-organization in s
tems with nonconservative relaxation rules~the existence of
SOC in the nonconservative models is, up to now, not w
understood@6–9#! and a paradigm of the success of SO
ideas, since it is able to reproduce important aspects of
dynamics of earthquakes.

Recently, Abe and Suzuki@10# observed a new power law
in the statistics of earthquakes. They analyzed earthqu
data from both the district of southern California and Jap
connecting their epicenters in order to generate a graph. E
area analyzed was divided into small cubic cells; they as
ciated with each of these cells a node every time an ea
quake started inside it. The epicenters of two succes
earthquakes were linked, defining an edge. In this way,
data have been mapped into a complex growing graph
behaves like a scale-free network of the Baraba´si-Albert type
@11#. The degree distribution of the graph decays as a po
law. The clustering coefficient and the diameter of a clus
were also calculated, showing small-world network prop
ties @12#. These features have revealed another aspec
earthquakes as a complex critical phenomenon.

We then decided to check whether the Olami-Fed
Christensen model could also predict this striking behav
We found that the nonconserving version of the model rep
duces the behavior of experimental data, even for a v
small degree of nonconservation. The degree distribution
the evolving network formed by its epicenters is scale-fr
However, the conservative version of the model has a qu
tatively different behavior, more similar to a random grap
whose degree distribution is Poisson, indicating that mos
the nodes have the same degree and, although random
corresponding network is much more homogeneous. Th
results are in agreement with some recent observations
support the claims that conservative and nonconserva
versions of the OFC model are quite different. Hergarten a
Neugebauer@13# studying the efficiency of the OFC mode
to predict foreshocks and aftershocks, de Carvalho and P
©2004 The American Physical Society01-1
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@14#, studying the transient behavior of the OFC model, a
Miller and Boulter@15#, studying the distribution of values a
which supercritical sites topple, have also reported qua
tively different behaviors for conservative and nonconser
tive OFC models.

In a complex graph, the edges are not distributed i
regular way, and not all nodes have the same numbe
edges. One possible way to characterize complex networ
through its distribution functionP(k), which gives the prob-
ability that a random selected node has exactlyk edges (k is
called thedegreeof the node!. In a random graph, since th
edges are placed randomly among the nodes, the majori
nodes have approximately the same degree, close to the
erage connectivitŷk&, and the distributionP(k) is a Pois-
son distribution with a peak atP(^k&). Most complex net-
works, however, have a distribution functionP(k) that
deviates significantly from a Poisson distribution. In partic
lar, for a large number of networks, associated with a w
class of systems, ranging from the World Wide Web to me

FIG. 1. Degree distributionP(k) for different values ofa. ~a!
Nonconservative regime: the results show a scale-free network
havior in all cases. The curves fora,0.249 have been shifted up
wards along they axis for clarity, otherwise they would all coincide
In all cases,L5200 and the number of registered epicenters is 15.
~b! Conservative regime: the degree distribution is similar to
random graph. In this case we haveL5200 and 106 events. Low-
ering the statistics does not change this behavior. All log scales
base 10.
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FIG. 2. Exponentg that characterizes the power-law behavior
P(k). The slopeg seems to increase linearly witha, at least for
values ofa close to the conservative regime. In all cases,L5200
and the number of epicenters is 105.

FIG. 3. Spatial distribution of node degrees in the nonconse
tive case, fora50.249,L5200, and 105 events. Sites associate
with nodes of higher degree are darker and, as one can see
closer to the boundaries. Panel~b! is a blow up of~a!. The 20 sites
closer to the boundaries do not appear in the picture, and the s
has been changed in order to show the details of the bulk of
lattice. We can see that the structure of the network observed in~a!
is reproduced~and it is not an effect due to the boundaries!.
1-2
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bolic networks,P(k) has a power-law tail,P(k);k2g. Such
networks are called scale-free@11#, and have called the at
tention of many researchers in the last years.

We simulated the OFC model in a square lattice, build
graphs with a procedure very similar to what has been
ployed by Abe and Suzuki. Each site that gives birth to a n
avalanche, of any size, is an epicenter; each epicenter de
a node, and every node is then connected to the node w
the next epicenter occurs, establishing a link or edge betw
them. If two subsequent earthquakes start in the same
~which does not happen if each site is a cell, but do hap
with larger cells!, we have a loop. After many avalanch
this procedure generates a complex network~or graph!, and
we have studied some of its statistical properties.

After eliminating a transient of at least 106 events, we
calculated numerically the distribution functionP(k) for the
graph constructed from the time sequence of epicenter
the OFC model for different values ofa and different lattice

FIG. 4. Spatial distribution of node degrees for the conserva
case. Sites associated with nodes of higher degree are darkL
5200, and the number of epicenters is 106. ~a! The same scale o
Fig. 3~a! has been used.~b! The scale has been changed to rev
details of the structure of the network that, in this case, is m
more homogeneous and quite different from that observed in
nonconservative regime.
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sizes. As the first and last sites are the only ones with an
number of edges~if they do not coincide!, they are elimi-
nated. Our results for the distributionP(k) can be seen in
Fig. 1. It is clear that, ifa,0.25 @Fig. 1~a!#, the distribution
is scale-free for some decades, with an exponentg that varies
linearly witha ~see Fig. 2!, at least for values ofa not too far
from the conservative regime. In Fig. 1 some curves h
been shifted upwards for the sake of clarity. They wou
coincide, except for a small change in the slope, otherw
We have also observed that the network grows toward
inside of the lattice, with the most connected sites in
borders and the most inner sites being the last ones b
added to it@see Fig. 3~a!#. The complex structure, howeve
is not a boundary effect. If we take out the border sites a
adjust the scale, we see that the same spatial structu
reproduced@Fig. 3~b!#. Because one needs a growing ne
work to observe the scale-free behavior@11#, after a certain
number of events, as a consequence of the finite size of
lattice, most of the sites of the lattice have already beco
part of the network. At this point the scale-free behav
starts to break.

If the system is conservative, however, the distributi
function P(k) has a well-defined peak, indicating a high
degree of homogeneity among the nodes@Fig. 1~b!#. Figures
4~a! and 4~b!, which should be compared with Fig. 3, sho
the spatial distribution of connectivities~degree of the nodes!
in the lattice. As expected, it is much more homogeneo
This homogeneous behavior is not destroyed if we cha
the statistic of events.

Finally, our findings also seem to be robust with respec
the cell size and the size of the lattice. If we increase the s
of the cell, defining, for instance, four adjacent sites of t
lattice as a unique cell, there is no change in the results,
even in the exponentg that characterizes the degree dist
bution P(k), as shown in Fig. 5. Also, there is no change
we increase the size of the lattice.

In conclusion, we have shown that the nonconserva
version of the Olami-Feder-Christensen model is able

e
,

l
h
e

FIG. 5. Degree distributionP(k), for a50.249, L5200, and
105 events, for different cell sizes. All log scales are base 10~a!
Continuous line:L5200 and each site of the lattice defines a ce
~b! Dashed line:L5400 and each four adjacent sites are in the sa
cell. The curve has been shifted upwards in they axis for clarity.
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reproduce the scale-free network associated with the dyn
ics of epicenters observed on real earthquake data. The
servative version of the model displays a qualitatively diff
ent behavior, being closer to a random graph. The sma
degree of nonconservation seems to be enough to chang
behavior of the model, since fora50.249 we see thatP(k)
has already a well-defined power-law behavior for some
cades. Those findings, besides giving an indication of
robustness of this model to reproduce the dynamics of ea
et

hy
.
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quakes, reproducing the experimental findings of Abe a
Suzuki, present a completely different dynamical mechan
to generate a scale-free network. There is no explicit rule
preferential attachment, and the preferential attachment
served in the network is a signature of the model dynam
Maybe the complete study of the properties of this netw
can help solve some still controversial aspects of the Ola
Feder-Christensen model and of self-organized critical
havior.
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